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Abstract 
Some background describing the rationale and early development of regional curve standardization 

(RCS) is provided. It is shown how, in the application of RCS, low-frequency variance is preserved 

in the mean values of individual series of tree indices, while medium-frequency variance is also 

preserved in the slopes. Various problems in the use of the RCS approach are highlighted. The first 

problem arises because RCS detrending removes the average slope (derived from the data for all 

trees) from each individual tree measurement series. This operation results in a pervasive ‘trend-in-

signal’ bias, which occurs when the underlying growth-forcing signal has variance on timescales that 

approach or exceed the length of the chronology. Even in a long chronology (i.e., including subfossil 

data), this effect will bias the start and end of the RCS chronology. Two particular problems 

associated with the use of RCS on contemporaneously growing trees, which might represent a 

typical (i.e., modern) sample, are also discussed. The first is the biasing of the RCS curve by the 

residual climate signal in age-aligned samples and the undesirable subsequent removal of this signal 

variance in RCS application. The second is the ‘differing-contemporaneous-growth-rate’ bias that 

effectively imparts a spurious trend over the span of a modern chronology. The first of these two can 

be mitigated by the application of ‘signal-free’ RCS. The second problem is more insidious and can 

only be overcome by the use of multiple sub-RCS curves, with a concomitant potential loss of some 

longer-timescale climate variance. Examples of potential biasing problems in the application of RCS 

are illustrated by reference to several published studies. Further implications and suggested 

directions for necessary further development of the RCS concept are discussed.  

 

5.1 Introduction 
Among those high-resolution environmental proxies that have the potential to express aspects of 

climate variability with perfect dating fidelity, at annual resolution, tree-ring records remain unique 

in the way in which they provide information continuously spanning centuries to millennia over vast 

swathes of the world’s extratropical land areas. In general, this information is most accurate in its 

representation of short-timescale variability; i.e., relative changes from year to year and decade to 

decade. It is in this high-frequency part of the variance spectrum that chronology confidence can be 

quantified most easily, and the empirical calibration of tree-ring chronologies, routinely achieved by 

regression against observed climate variability, can be more accurately facilitated and subjected to 

rigorous verification through comparison with independent data (Fritts 1976, Section 5.4; Fritts and 

Guiot 1990; Briffa 1999). 
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Tree-ring data series, extracted from radial tree-growth measurements, may contain information 

about external growth influences on multidecadal, centennial, and even longer timescales. The 

expression of this information in individual series of measurements is, however, obscured by trends 

associated with changing tree geometry over time. In localized site chronologies and in large 

regional average chronologies, the expression and reliability of long-timescale variance is affected 

by the techniques used to ‘standardize’ the measurements to mitigate non-climate effects and by the 

manner in which the resulting standardized indices are incorporated within the final chronology. In 

this discussion, for convenience, we define medium-frequency variability as that representing 

timescales of decades up to the age of a tree. We define low-frequency variability as that manifested 

at timescales beyond the age of a tree. 

  

We begin this review by citing a simple example that demonstrates why, where the intention is to 

recover evidence of long-timescale climate variability in chronologies, it is inappropriate to use 

common ‘data-adaptive’ standardization techniques (Cook et al. 1995). We also show how the 

presence of medium-frequency common tree-growth influences can create distortion in the 

recovered climate signal, particularly at the ends of chronologies standardized by using flexible 

curve-fitting techniques. 

 

We provide some background to the history and simple application of what is known today as 

regional curve standardization (RCS), a standardization approach that has the potential to preserve 

the evidence of long-timescale forcing of tree growth. We discuss a number of potential biases that 

arise in the simple application of RCS. We provide some illustrative examples of potential bias 

issues that have arisen in selected applications of RCS in previous published work. Finally, we 

suggest some ways in which the potential problems we have highlighted might be addressed in 

future work. 

 

5.2 Frequency limitation in curve-fitting standardization 
We now know that some types of tree-ring standardization are not ideal where there is a specific 

requirement to compare the growth rates of trees over long periods of time. The fitting of linear or 

curvilinear functions, or even more flexible forms of low-pass filtering, to series of individual 

growth measurements and the subsequent removal of variance associated with these trends, results in 

the inevitable loss of longer-timescale information, even in relatively long measurement series; i.e., 

the so-called segment length curse (Briffa et al. 1992; Cook et al. 1995). 

 

As an illustration of the loss of low-frequency variance incurred by fitting functions through 

measured growth parameter series, we show Figure 5.1, based on Figure 1 in Cook et al. (1995). 

This figure shows the ‘standardization’ of a pseudo-climate signal comprising the arithmetic sum of 

three sine waves (with periods of 250, 500, and 1,000 years, each with an amplitude of two units, 

plotted with their phases synchronized so the curves coincide every 500 years), achieved, in the 

original work, by subtraction of the values of a straight line fitted through the single composite 

series. The loss of the original 1,000-year trend in the resulting index series is plain. However, what 

is also clear is that the higher-frequency variance represented by the sum of the two shorter-period 

sine waves (dotted line in Fig. 5.1c) has been severely distorted at both ends of the chronology 

(compare the dotted and solid lines in Fig. 5.1c). This distortion comes about because of the 

localized influence of the medium-frequency signal variance at the beginning and end of the 

composite series on the overall fit of the standardizing line. Here the first and last values of the 
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signal are both zero, while the first and last values of the indices are at their minimum and 

maximum, respectively. Had this example extended over another 500 years (i.e., 1,500 years), the 

aggregate signal series would have had zero slope overall. Standardizing with a straight line fitted 

through the data would not produce any distortion of medium-frequency signal in the index series. 

This potential end-effect phenomenon, or ‘trend distortion,’ encountered in data-adaptive approaches 

to curve fitting in tree-ring standardization is discussed in more detail in Melvin and Briffa (2008). 

We return to this issue in the context of RCS later. 

 

 
 

Figure 5.1. An example of the loss of long-timescale variance resulting from simple data-adaptive 

standardization (in this case, linear detrending), based on the example of Figure 1 in Cook et al. 

(1995): (a) three sine waves with periods of 1,000, 500, and 250 years; (b) the ideal ‘signal’ series 

made as a composite of the three sine waves A linear trend line is shown fitted through these data; 

(c) indices generated by division of the signal series values by those of the trend line (solid line) and 

a composite of the original 500- and 250-year sine waves (dashed line), showing the distortion 

apparent near the ends of the ‘chronology.’  

 

5.3 Background and description of regional curve standardization 
The limitations in preserving evidence of long-timescale climate change in chronologies, led to the 

reintroduction of what is now generally known as regional curve standardization. This approach 

scales ring measurements by comparison against an expectation of growth for the appropriate age of 

ring for that type of tree in that region (Briffa et al. 1992a). The tree-ring measurements acquired 

from multiple trees in one area are aligned by ring age (years from pith), and the arithmetic means of 

ring width for each ring age are calculated. The curve created from the mean of ring width for each 

ring age is smoothed by using a suitable mathematical smoothing function (Briffa et al. 1992; Esper 

et al. 2003; Melvin et al. 2007) to create smoothly varying RCS curve values for each ring age. In a 

simple application of RCS, each ring measurement is divided by the RCS curve value for the 

appropriate ring age to create a tree index (note in all cases subsequently discussed here, indices are 

created by division of the expected into measured values). Chronology indices are created as the 
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arithmetic mean of tree indices for each calendar year. The value of the expected growth curve is, 

therefore, empirically derived as the average value, for that tree-growth parameter for the specific 

age of ring, based on the available sample of trees from that site or region. The reordering of the 

data, from calendar to relative life span age, is intended to remove the effect of climate variability on 

expected ring growth. In the reordered alignment of the data, this climate-related variance is 

assumed to be distributed randomly and expected to cancel out when the age-aligned data are 

averaged to form the RCS curve.  

 

In standardization applications where the means of index series are constrained to be equal (e.g., 

approximately 1.0), a chronology formed by averaging these data is not capable of representing 

variance on timescales longer than the lengths of constituent series. The means of series of tree 

indices are not constrained in RCS, and it is because the means of index series from different trees 

can vary through time, that the chronology constructed from them can exhibit long-timescale 

variance at periods up to the length of the chronology or beyond (Briffa et al. 1992; Cook et al. 

1995; Briffa et al. 1996). 

  

The use of the curve formed by calculating mean ring width of radial measurements ordered by 

cambial age has a long history in forestry and dendroclimatic studies, and an earlier awareness of 

some of the problems associated with it can be recognized. In seeking to study past climate changes 

in California, Huntington (1914) used a curve of growth rate plotted against ring age, which included 

a correction for longevity because he recognized that older trees tended to grow more slowly, even 

when young, compared to others. In a study of the relationship between tree growth and climate in 

Sweden, Erlandsson (1936) calculated growth rate curves for specific age classes of trees at various 

locations and applied a correction factor to enable comparison of different age classes. Mitchell 

(1967) showed that the shape of the mean curve by ring age varied between species and for the same 

species in different geographical locations. Becker (1989) used trees from generally even-aged, 

living stands but selected a large number of stands with as wide a range of stand ages as possible in 

order to eliminate the effect of ‘trends according to calendar years.’ Dupouey et al. (1992) developed 

a mean growth by age curve to model and remove the age trend while retaining long-timescale 

variance. Briffa et al. (1992a, 1996) introduced the term ‘regional curve standardization’ to describe 

the method in the specific context of attempting to recover long-timescale climate trends but used 

large numbers of subfossil trees, hoping to eliminate the problem of modern climate biasing the 

parameters of the RCS curve.  

 

Nicolussi et al. (1995) examined how tree-growth rates change when they are quantified for a 

specific ring age class through time and discussed problems associated with the interpretation of 

these changes. Badeau et al. (1996) examined potential sources of bias in the use of regionally based 

age curves. Esper et al. (2002) used two different RCS curves to standardize tree measurements from 

a wide range of sites being analyzed together, and Esper et al. (2003) also examined other aspects of 

RCS implementation. Helama et al. (2005a) examined the effect of forest density on the shape of the 

RCS curve. 

 

Since its recent reintroduction for dendroclimatic studies, there has been a resurgence in the 

application of RCS, and it has been adopted and sometimes adapted in dendroclimatic studies 

intended to capture long-timescale climate variance (e.g., Rathgeber et al. 1999a; Cook et al. 2000; 

Grudd et al. 2002; Helama et al. 2002; Melvin 2004; Naurzbaev et al. 2004; Büntgen et al. 2005; 

D’Arrigo et al. 2005; Linderholm and Gunnarson 2005; Luckman and Wilson 2005; Wilson et al. 

2005)  
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5.4 Potential biases in RCS  
Previous discussions of the recent application of RCS make it clear that the advantage offered by this 

approach, in terms of its potential to represent long-timescale variability in chronologies, must be 

weighed against the likelihood of large uncertainty associated with this information. Fritts (1976, p. 

280) pointed out problems with the use of RCS when he stated, ‘… all individuals of a species rarely 

attain optimum growth at the same age, and individual trees differ in their growth rates because of 

differences in soil factors, competition, microclimate, and other factors governing the productivity of 

a site.’  

 

In practice, the simple application of RCS as described above makes sweeping assumptions about 

the validity of using a single, empirically derived curve to represent ‘expected’ radial tree growth as 

a function of tree age under constant climate conditions, and that this simple curve is an appropriate 

benchmark for scaling measured ring widths throughout the entire time span of a chronology. It is 

assumed that the mean of tree-growth deviations from this expectation, as observed in multiple tree 

samples at any one time, represents the net tree-growth response to variations in climate forcing 

alone. It is assumed that the form of the RCS curve is unbiased by the presence of residual climate 

variability in the stacked average of cambial-age-aligned samples, and that through time the growth 

of sample trees is not biased by some factors other than climate that would lead to a 

misinterpretation of the RCS chronology variability. In practice, these assumptions are unlikely to be 

entirely valid. The purpose of this review is to draw attention to several examples of how different 

potential sources of bias can affect RCS chronologies. 

 

5.4.1 ‘Trend-in-signal’ bias 

The first distortion of underlying common forcing signal occurs in RCS when that signal has 

variance on timescales that approach or are longer than the length of the chronology. As a 

hypothetical example, let us say that the climate affecting tree growth has a trend over 600 years 

(Fig. 5.2a; actually, this series represents a negative trend with added white noise smoothed with a 

10-year spline to represent short-timescale climate forcing superimposed on the long-term forcing 

trend). This signal series can be subdivided into five 200-year-long series, each overlapping by 100 

years, to represent a set of pseudo-tree-ring measurement series (Fig. 5.2b). Aligning these series by 

ring age (Fig. 5.2c), averaging and smoothing, produces the RCS curve (shown in Fig. 5.2d). This 

RCS curve displays the mean slope of all sample series. As they all contain the underlying long-term 

forcing signal, the RCS curve must do likewise. Each sample measurement series is then indexed by 

dividing by the appropriate age value of the RCS curve. Each of the resulting standardized series 

(Fig. 5.2e) has no substantial overall trend (i.e., the mean series of the age-aligned index series has 

zero trend). 

 

When the index series are realigned by calendar year, each series systematically underestimates the 

magnitude of the ideal forcing in its early section and overestimates the signal later, a potential 

medium-frequency bias. In the average chronology (Fig. 5.2f), the original overall signal trend is 

captured by the differences in the means of the index series. In our simplified example, the bias in 

the trends of individual index series cancel to some extent by virtue of the compensating biases in 

overlaps between early sections of some index series and late sections of others. In situations where 

there is a good overlap in many series, this potential bias could be averaged out. However, this 

cannot happen at the start and end of the chronology. In the case of a long-term declining signal, the 
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chronology will, respectively, under- and overestimate the ideal chronology at the beginning and 

end. With a long-term positive forcing trend, the signs of the biases will be reversed. 

 

 
 

Figure 5.2. A schematic representation of how the simple regional curve standardization (RCS) 

recovers long-timescale trend from the mean values of index series but with potential distortions 

within, and particularly at the ends, of the chronology: (a) an idealized chronology signal composed 

of an overall negative slope with superimposed medium-frequency variance; (b) five overlapping 

200-year-long series representing simulated measurements; (c) the five series aligned by ring age; 

(d) the smoothed RCS curve generated by averaging these series; (e) the series of indices generated 

through division by the RCS curve; (f) the averages of these indices that make up the resultant 

chronology (solid line), which is shown superimposed on the ideal chronology (dashed line).  

 

Figure 5.3 illustrates a somewhat more realistic example of this problem than that shown in Figure 

5.2. The underlying forcing signal that is used here is similar to that used in Figure 5.1, but rescaled 

to resemble ring measurements (white noise with mean of 1.0 and range ±5% was smoothed with a 

10-year low-pass filter added to the three sine waves, each of which has an amplitude of 0.34). This 

aggregated sine wave signal series was sub-sampled to produce forty-one 334-year pseudo-

measurement series. Their start dates are evenly distributed between year 1 and year 668, providing 

the potential for a 1,002-year chronology with a maximum replication of 20 series (see shaded area 

in Fig. 5.3d). Figure 5.3a shows five of the sample series. Figure 5.3b shows the average of age-

aligned measurements of all 41 series, and Figure 5.3c shows the same five example series from 

Figure 5.3a, after standardization with the average RCS curve. Figure 5.3d shows how the medium- 
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and long-term trends in the underlying forcing are relatively well represented in the RCS 

chronology. The loss of long-timescale signal apparent in Figure 5.1c does not occur in Figure 5.3d. 

However, the systematic under- and overrepresentation of the aggregate signal (in years 1 to 300 and 

700 to 1002, respectively) results from the trend-in-signal bias, similar to the biased representation 

of the medium-frequency signal shown in Figure 5.1c. The trend-in-signal bias is generally 

manifested as an end-effect problem in both RCS and curve-fitting standardization. However 

(because trend distortion is the result of slope removal), while in the latter case the entire slope of an 

individual-tree measurement series is removed, in the case of RCS, only the mean slope over the 

whole length of the chronology is removed (i.e., implying a much smaller-scale problem of overall 

trend distortion in RCS). 

 

Note that by applying the recently advocated ‘signal-free’ method of standardization (see Appendix), 

this problem may largely be mitigated in the RCS. For example, when applied to the data in Figure 

5.3, this approach is able to capture all of the long-timescale variance and it does so without 

producing this end-effect bias. For these equal-length, artificial series, the ‘ideal’ chronology signal 

is recovered without distortion as shown by the blue curve of Figure 5.3c. However, it is important 

to stress that in this highly artificial example, all of the index series have the correct means and 

amplitude of variance, perfectly matching the hypothesized signal. In a ‘real-world’ situation, 

random variation in growth rates of trees would prevent such a perfect result. 

 

 
 

Figure 5.3. An example of the use of regional curve standardization (RCS) where the ‘signal’ is the 

same composite of the three sine waves shown in Figure 5.1a: (a) five sample series; (b) smoothed, 

mean RCS curve of all 41 series; (c) indices of the five example series created by division with the 

RCS curve; (d) the ideal chronology (dashed line; as in Fig. 5.1b), the RCS chronology (thick line) 

with ‘trend-in-signal’ bias apparent at the start and end of the chronology. Sample counts are shown 

by grey shading. A substantially undistorted recovery of the 1,000-year trend (thin line), and the 

variance associated with the shorter-period sine waves is achieved in using the ‘signal-free’ 

approach discussed in the Appendix. 

 

5.4.2 ‘Differing-contemporaneous-growth-rate’ bias 
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The second potential end-effect bias arises because, even within one region, there is often a variation 

in the growth rates of contemporaneously growing trees. The problem that a single RCS curve may 

not be relevant for trees with widely varying growth rates has been widely recognized (e.g., 

Erlandsson 1936; Nicolussi et al. 1995; Briffa et al. 1996; Rathgeber et al. 1999a; Esper et al. 2002). 

In a restricted geographical range where trees might be expected to experience the same regional 

climate, localized elevation or aspect differences can lead to variations in the climates of specific 

tree locations. Even where trees do experience the same common history of climate forcing during 

their lifetime, invariably, some trees will exhibit greater or less radial growth than others because 

they are influenced by non-climatic factors such as differences in soil quality or competition for light 

or other resources. A simple RCS approach uses a single (average) model of expected tree growth 

(e.g., radial ring increment or maximum latewood density) as a function of tree age, applied to all 

trees in one region. If trees are drawn from a wide region or one with diverse ecological conditions, 

differences in growth rate in contemporaneously growing trees is virtually inevitable. Within such a 

sample, the slope of a single average RCS curve will be systematically too shallow for relatively 

fast-growing trees and too steep for relatively slow-growing trees (Fig. 5.4).  

 

This mismatch is most apparent for the indices that are produced from earlier years of the tree 

lifetime, as the sub-RCS curves for fast- and slow-grown trees (Fig. 5.4b) often tend to a common 

value in old age and the corresponding index series, produced as quotients from the overall mean 

RCS curve, display a negative trend for the early years of a fast-grown tree and a positive trend in 

the early years of a relatively slow-grown tree (Fig. 5.4c). In an RCS chronology, if in one period 

fast-grown trees outnumber slow-growing trees (or vice versa), artificial medium-frequency trends 

(i.e., of non-climate origin) might result. It is at the recent end of a chronology that the influence of 

downsloping indices, derived from fast-growing trees, may not, in general, be balanced by the 

upsloping index series from slower-growing trees. The result, even under constant climate 

conditions, is an overall negative bias, seen in the final century or most recent decades of the 

chronology.  
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Figure 5.4. Based on 207 measurement series, for which pith-offset estimates are available (Kershaw 

2007), from the AD portion of the Swedish Torneträsk chronology (Grudd 2002): (a) curve of mean 

ring width by ring age, bracketed by thin lines showing the plus and minus one standard deviation 

limits of the mean values; (b) separate curves of mean ring width by ring age for all trees (middle 

line - as in 5.4a), the fastest-growing third of trees (upper line), and the slowest-growing third of 

trees (lower line); (c) mean ring width indices (produced by dividing the measurements by the 

appropriate age values on the overall-mean regional curve standardization curve), plotted by ring age 

for the fastest-growing third of trees (upper line) and the slowest-growing third of trees (lower line). 

The gray shading in (a) and (b) shows sample replication for the fastest- and slowest-growing trees, 

respectively. 

 

5.4.3 ‘Modern-sample’ bias 

The next bias we discuss has been referred to by Melvin (2004, Section 5.4) as ‘modern-sample 

bias.’ We consider this of sufficient importance to identify it as a specific potential bias in its own 

right, but it arises as a consequence of the previously discussed bias (i.e., because of different growth 

rates in contemporaneous trees) and because of variations in the longevity of trees, allied to common 

tree sampling practice. 

 

A naturally grown, uneven-aged forest (even if growing in an unchanging climate) will contain trees 

of differing ages that have roughly the same diameter. The widths of rings of a specific age from 

trees of the same diameter must be smaller for the older trees than for the younger trees. A plot of 

mean ring width for a specific ring age plotted by calendar year for a specific sampling diameter 

range (i.e., only for trees of a similar diameter when cored) will display a steady increase over time, 

independent of any common climate signal. If samples are taken only from trees alive on the 

sampling date, then the mean growth rate by year (as the average of each diameter class for any 

specific age range, which all slope upwards) must also slope upwards.  

 

5.4.3.1  Relationship between growth rate and longevity 

This bias arises if there is a relationship between average tree growth rate and tree longevity and 

generally applies only to trees with full circumferential growth. If we assume that the probability of 

tree mortality is related to tree size—i.e., large trees have a high risk of mortality—then as trees 

approach the largest size for a given site, they are much more likely to be killed, perhaps because of 

some extreme climate event. Hence, the likelihood that some random extreme event will kill a tree is 

higher while it is in the ‘near maximum’ size category. Rapidly growing trees are more likely to 

approach or reach the maximum size than are slower growing trees because the former need only 

spend a shorter time in the ‘high-risk’ (i.e., approaching large) size category (Melvin 2004, Section 

5.4). To grow old, a tree must grow slowly and so remain for some considerable time, safely below 

the maximum size by some margin. 

 

This, of course, is a great simplification of likely tree mortality influences. It takes no account of the 

competition dynamics of trees growing within forest stands; i.e., self-thinning processes (Dewar 

1993). Nevertheless, there is some observational evidence, particularly when competition pressures 

are not strong, that to become old a tree might grow slowly (Huntington 1913). Figure 5.5 is an 

attempt to demonstrate this concept using subfossil pine ring width data from northern Fennoscandia 

(Eronen et al. 2002; Grudd et al. 2002). These wood samples provide data that span the last 7,500 

years, but here we have excluded any data from trees that were alive after 1724. This choice 

precludes any human sampling influence on the life span of trees. The retained data were used to 

produce a single RCS curve. The measurement data for each tree sample were then summed to 
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provide an estimated diameter, and this diameter was compared to the mean regional diameter 

calculated from the appropriate age point of the RCS curve to give a relative growth rate (i.e., the 

ratio of tree diameter at its final year to the RCS curve diameter at that year). In this way, all the 

individual tree measurement series were grouped into eight relative growth classes and a sub-RCS 

curve was constructed for each relative class. The mean growth rate (millimeters per year) by age for 

these eight RCS curves is shown in Figure 5.5a, and the decay in mean growth rate is due to the 

reduction of ring width with age. A tendency for higher growth-rate classes to have shorter life spans 

can be discerned. Plotting the mean growth rates of individual samples by sample age (i.e., final tree 

diameter divided by final age) again reveals a tendency for slowly growing trees to live longer (Fig. 

5.5b). The oldest trees have mean growth rates far lower than the reduction explained by the 

expected decrease of ring width with age shown in the curves of Figure 5.5a. This occurs despite the 

fact that many subfossil tree samples lose outer rings because of erosion or degradation of the 

relatively soft sapwood. 

 

 
 

Figure 5.5. Based on 1724 subfossil trees from Torneträsk (Grudd 2002) and Finnish Lapland 

(Eronen 2002) from the period circa 5400 BC to AD 1724; i.e., excluding trees that were alive after 

1724 to avoid any anthropogenic factors and sampling bias: (a) all trees sorted by growth rate 

relative to a single regional curve standardization (RCS) curve, into eight separate RCS curves; (b) a 

scatter plot of mean growth rate for each tree plotted against final tree age. Scatter plot points are 

shaded to match their growth rate curve of (a). This figure illustrates the tendency for longevity to be 

inversely proportional to tree vigor. 

 

5.4.3.2  Growth rate/longevity association distorts RCS curves 

Figure 5.6 illustrates a very simplified example of one distortion that occurs where a sample of even-

sized (radius 26.4 cm) trees of varying age might be cored (Fig. 5.6a). Here there is an assumed 

constant climate forcing (horizontal dashed line of Fig. 5.6b) and the younger trees have 

progressively larger growth rates. The mean RCS curve is horizontal up until 240 years (the age of 

the youngest tree) but gets progressively lower as the lower growth rates of the older trees dominate. 

Thus this is a distortion of the RCS curve caused by older trees having lower growth rates. Hence 

individual index series aligned by calendar age then exhibit positive trends after 240 years (Fig. 



Dendroclimatology 

  11 of 30 

5.6c), and the calendar-aligned averaged values (Fig. 5.6d) display an initial (stepped) increasing 

trend for the first 160 years of the mean chronology due to the oldest trees having slower growth 

rates, and a late increasing trend after 240 years because of distortion of the RCS curve, despite the 

fact that the underlying forcing signal is constant. The constant mean growth rate is not realistic, but 

the bias shown will apply similarly to curvilinear declining ring series. 

 

 
 

Figure 5.6. A simple hypothetical example of the distortions to a common underlying forcing signal 

when a chronology is constructed by using regional curve standardization (RCS) applied to an 

uneven-aged group of similar-sized trees. (a) The measurements from five trees of unequal length 

and of the same final diameter (26.4 cm), each containing the same trend in growth superimposed on 

the differing overall average growth. When aligned by ring age, the average RCS curve (b), instead 

of displaying the expected linear growth trend (dotted line) is distorted, showing narrower expected 

ring width for older trees. (c) Series of indices created through division of the simulated 

measurements by the RCS curve values, where all but the shortest series are distorted. (d) The 

chronology created by averaging the index series and the desired low-frequency signal (dotted line). 

 

In order to demonstrate modern-sample bias, it is necessary to use series of tree indices that have no 

common climate signal and no common age-related growth trend. Here, 1724 trees from both 

Torneträsk (Grudd et al. 2002) and Finnish Lapland (Eronen et al. 2002) from the several-millennia 

period 5400 BCE to AD 1724 are used. Trees that were alive after 1724 are not included so as to 

avoid any anthropogenic factors or sample bias arising from the coring of living trees. The 

measurement data are all realigned so that their final growth years correspond (i.e., they are ‘end-

aligned’ and the end year is nominally set to zero). The mean ring width of the subset of all 40-
 
to 

60-year-old rings from trees with a final radius between 12 and 14 cm (ring counts shown as gray 

shading) are plotted by nominal year for Figure 5.7a. In order to reach the 12–14 cm final diameter 

class, the 40- to 60-year-old rings must be larger for the younger trees than in the older trees and this 

curve of mean ring width takes on a positive slope. Provided that there is some maximum size limit 

to tree growth, the sum of data for any, and hence all, size classes will also produce an upwardly 

sloping common signal. This bias occurs in the absence of any common climate signal, and is a 

result of random distribution of tree growth rates and the fact that sampling takes place at a specific 

point in time.  



Dendroclimatology 

  12 of 30 

 

Figure 5.7b shows the yearly means of all RCS indices (based on a single RCS curve) after 

alignment by their final growth year (year zero). Even though these trees grew at various times over 

a 7,000-year period, and should not, therefore, contain any common external growth-forcing signal 

when in this alignment, there is still evidence of a residual bias, represented by a general positive 

slope as tree counts increase followed by a slight decline in the final period, when tree counts remain 

constant. This decline is likely the result of indices of ‘fast-growing’ trees, with their typical 

negative slope (cf. Fig. 5.4), dominating over the weaker positive trend from ‘slow-growing’ trees.  

 

This result demonstrates the strong likelihood of sampling bias implicit in analyses of ring width, 

density, or basal area increments, where the data are stratified within discrete age classes (e.g., Briffa 

et al. 1992; Nicolussi et al. 1995). Age band decomposition (ABD) as proposed by Briffa et al. 

(2001), although originally envisaged as a means of circumventing the need to define a statistical 

model of expected growth as a function of tree age, is in effect similar to applying RCS. This 

conclusion follows because the mean value for each age band, when plotted as a function of ring 

age, will form a stepped version of the RCS curve. In ABD, the mean value of the time series for 

each age band is subtracted from each average yearly value for that band, and these differences are 

divided by the standard deviation of the band time series to transform the data into normalized 

series. These series are then summed across all (or selected) age bands to form an ABD chronology. 

When this method is applied in this way to the data for a single species and location (e.g., see Briffa 

et al. 2001), it is similar to applying the RCS at a site level to a set of living-tree core samples. The 

results may, therefore, be affected by a modern-sample bias, bearing in mind the common practice of 

sampling dominant or codominant trees (Schweingruber and Briffa 1996). 

 

 
 

Figure 5.7. Based on the same subfossil tree-ring dataset used in Figure 5.5, but here with all 

individual series aligned on the final ring of each series (year zero): (a) the mean ring width of the 

subset of all 40-
 
to 60-year-old rings from trees with a final radius between 12 and 14 cm; (b) 

indices, created using regional curve standardization (RCS), aligned according to their final year of 

growth (year zero) and averaged to form an ‘end-aligned’ chronology. Ring counts for each year are 

shown by the gray shading. 

 

Where this sampling bias exists, it is difficult to gauge the extent to which it amplifies or obscures 

the accompanying influence of climate variability. Note that in Figure 5.7b, the range of the bias is 

only 0.14 units, likely considerably less than the range for typical chronology variances, for 
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example, as is shown in Figure 3 of Becker (1989) or in Figure S4b of Esper et al. (2007), where 

chronologies display similar shapes (in their time variance) to that of the bias in Figure 5.7b. 

Figure 5.8 is a dramatic example of how the selection of samples, based on a minimum size 

criterion, can lead to a large potential bias at the ends of, even long subfossil, chronologies. Again 

we use measurement data provided by the ADVANCE-10K project (Eronen et al. 2002; Grudd et al. 

2002), this time including all subfossil (from lakes and dry land) and modern core data for the last 

2,000 years. These (more than 1,000) sample series were combined to produce an RCS chronology 

(based on a single RCS curve) shown as the solid black line in Figure 5.8a, with the temporal 

distribution of the sample series shown by gray shading. The data were sub-sampled to simulate 

eight hypothetical samplings during the last 2,000 years, separated by 200-year intervals, the most 

recent of which was in the year 1980. Only trees that would have been alive and that had achieved a 

minimum diameter of 14 cm are included in each subsample. The subsamples form a large 

proportion (43%) of all rings. This is a realistic simulation of common dendroclimatic sampling 

strategies.  

 

 
 

Figure 5.8. Based on 1,024 trees from AD portions of the Torneträsk and Finnish Lapland 

chronologies. (a) The simple regional curve standardization (RCS) chronology (black line) and 

associated tree counts (gray shading), truncated before AD 400. Simulated ‘modern sample type’ 

chronologies were created by averaging eight selected groups of tree indices (all produced by using 

the same single RCS curve and only where sample counts exceed 2). Each sub-chronology is made 

up of samples that would have been collected by using modern sampling practice with selections 

made on a series of specific dates (the first is AD 580 and subsequent selections are made every 200 

years until 1980) and only including trees alive and with a diameter greater that 14 cm on the 

sampling date. (b) Shaded areas showing sample counts by year for each simulated chronology, 

plotted alternatively from the bottom and top of the figure for clarity. Approximately 43% of the 

total ring measurements are included in the ‘selected’ samples. 

 

The temporal distribution of each ‘sampled’ group of trees is shown in Figure 5.8b. The eight 

individual sub-chronologies, each produced as the average of the index series generated in the 

production of the overall mean RCS chronology, are shown superimposed on the RCS chronology 

produced from all 1024 series. The sub-chronologies generally underestimate the mean chronology 

in their early years (mainly composed of older and generally slower-growing trees) and overestimate 
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the overall chronology in their later years (when the younger, more vigorous trees dominate the 

sample). This result demonstrates that sampling bias, when allied with the growth rate/longevity 

phenomenon, imparts negative bias in the start of a chronology and positive bias in the recent period. 

The systematic continuous overlaps between slower- and faster-grown trees in this example 

compensate throughout the chronology for these biases. That is, of course, except for the early 

section and, most noticeably, in the most recent 100 years of the overall chronology, which appears 

to follow what is likely to be a biased trajectory due to an absence of small indices from young, 

slow-growing trees that would have gone on to become the early sections of old trees.   

 

5.5 Particular problems associated with the application of RCS to modern (i.e., 

living-tree) sample data 
In practice, the underlying assumption of RCS, that the averaging of measurement series aligned by 

ring age and subsequent smoothing of the resulting mean curve will remove all the climate-related 

variance, may not always be valid. This assumption cannot be true when all samples span the full 

length of the chronology. In such a case, the overall climate signal will be contained within the RCS 

curve and will be completely removed by standardization. In a modern chronology where trees are of 

unequal length, the average overall slope of the chronology is contained in the RCS curve and is thus 

removed from every tree in the final chronology. In a long (i.e., partly subfossil) chronology, with 

long-timescale variation maintained in the means of each index series, this is an ‘end effect.’ 

However, where the chronology comprises one set of currently coexisting trees, as in many modern 

samples, the overall slope of the chronology representing the external (i.e., climate control of tree 

growth) will be removed. Had the chronology of Figure 5.6 had an overall downward slope, the 

resultant chronology would still display an upward slope (due to modern-sample bias) because the 

downward slope of the chronology would be removed by RCS.  

 

Even where an uneven-aged sample of trees covers a wide time span, a localized coincidence in the 

temporal spans of many samples at roughly the same stage in their life span will locally bias the RCS 

curve. This bias is more likely near the ‘old-age’ section of the RCS curve, where typical low 

replication of very old trees leads to greater uncertainty in the RCS curve. This bias is potentially 

large for modern chronologies and seriously limits the application of RCS where trees come from 

the same time period (Briffa et al. 1996). 

 

In a typical ‘modern’ dendroclimatic sample collection, the earliest measurements will come from 

the oldest trees cored, which tend to be slow growing. Faster-growing trees that may have been 

contemporaneous with the old trees in the early years will likely not have survived long enough to be 

included in the modern sample. Similarly, the most recent section of the chronology produced from 

these sampled trees would not contain data from young, slow-growing trees because these trees 

would not be of sufficient diameter to be considered suitable for coring. Any relatively young trees 

sampled would likely have to have been vigorous and growing quickly enough to allow them to 

attain a reasonable size in a short time. This leads to a situation where a ‘modern sample’ may 

exclude the fastest-growing trees of the earliest period and also exclude the slowest-growing trees of 

the most recent period. Such a sample of uneven-aged trees will be less susceptible to trend-in-signal 

bias, but still prone to contemporaneous-growth-rate bias, with smaller indices at the start of the 

chronology and larger ones at the end, imparting a positive bias on the overall chronology slope. 

 

Figure 5.9 illustrates the use of RCS on a ‘modern’ chronology and the way in which a recent (ca. 

1920) increase in the radial increments can influence the shape of the RCS curve. This set of 100 
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measurement series (each an average of data from multiple cores) from Luosto, north Finland 

(Melvin 2004, Section 3.2), has a wide age range. Pith-offset estimates are available for all of these 

data. First, an RCS curve and corresponding chronology were produced from them (thin lines in 

Figs. 5.9a, b). The signal-free method (see Appendix) was used to create an unbiased (signal-free) 

RCS curve and corresponding chronology (thick lines in Figs. 5.9a, b). The removal of the common 

signal from the measurements changes the shape of the RCS curve, removing the influence of the 

post-1920 growth increase from recent data (see values for ages 200–240 and 340 onwards in Fig. 

5.9a) and produces a relative increase in the expectation of early growth (up to age 120), and a 

smoother, less noisy RCS curve. The resultant chronology will still suffer from bias (see sections 

5.4.1–3), and the overall chronology slope is to some extent ‘arbitrary’ as described above. 

However, provided there is a wide distribution of tree ages, following the signal-free approach can 

mitigate the localized bias imparted by climate in the RCS curve without the need for large numbers 

of earlier subfossil tree data to ‘average’ away any modern climate signal. 

 

Even the application of the signal-free technique is not able to mitigate the loss of the overall slope 

of the chronology, and a ‘modern’ chronology must therefore be considered as having a largely 

‘arbitrary’ slope. 

 

 
 

Figure 5.9. An illustration of the use of regional curve standardization (RCS) on a ‘modern’ 

chronology and the influence on the shape of the RCS curve exerted by a recent (presumably 

warming related) growth rate increase. The 100 mean-tree series from Luosto, north Finland (Melvin 

2004), which have a wide age range and include pith-offset estimates but, after 1920, also show a 

large growth increase are used here: (a) a simple RCS curve (thin line) and the ‘signal-free’ RCS 

curve (thick line) and (b) the corresponding simple RCS chronology (thin line) and ‘signal-free’ 

RCS chronology (thick line). Gray shaded areas show tree counts.  

 

5.6 Examples of issues that arise in various applications of RCS 
In this section, we discuss several examples of previous work, chosen here to illustrate ‘potential’ 

bias problems that are suggested by the way in which previous authors have chosen to implement, or 

could be interpreted as having implemented, first, simple RCS and then variations of the simple 
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RCS. The three examples are based on work by Briffa et al. (1992), Esper et al. (2002), and Helama 

et al. (2005a, b). 

 

5.6.1 Inappropriate RCS definition 

Briffa et al. (1992) constructed separate RCS curves for ring-width (TRW) and maximum-latewood-

density (MXD) data aquired from temporally overlapping subfossil and living-tree pine samples 

from north Sweden. The chronologies spanned the 1,480-year period from AD 501 to 1980. The 

ring-width RCS curve was built from 425 samples, while the density data comprised measurements 

made on a subsample of 65 of these trees. Though both the ring-width and density chronologies 

spanned more than 1,400 years, the greater replication of the data in the ring-width curve was 

considered more likely to have produced an ‘unbiased’ RCS curve (i.e., one that is not influenced by 

residual climate variance in the mean of the measurement data for any specific tree age). A 

curvilinear (negative exponential) curve was fitted to the ring width RCS curve, but a straight line 

was fitted to the density RCS curve (following Bräker 1981). The resulting ring-width and MXD 

RCS chronologies were found to diverge noticeably from each other after about 1800, with the 

density chronology exhibiting progressively lower index values. Briffa et al. (1992) ‘corrected’ this 

apparent anomaly by fitting a line through the residuals of actual minus estimated ring widths, 

derived from a regression using the density data over the period 501–1750 as the predictor variable, 

and then removing the recent apparent decline in the density chronology by adding the fitted straight 

line values (with the sign reversed) to the chronology data for 1750–1980. This ‘correction’ has been 

termed the ‘Briffa bodge’ (Stahle, personal communication)! In Figures 5.10 and 5.11, we show how 

this comparative anomaly in the density compared to the ring-width chronology arose, at least in 

part, because of an inappropriate representation of the density RCS curve. We use the same density 

data as used by Briffa et al. (1992) but use a subset of 207 ring-width measurement series from the 

original 425 series that were subsequently updated by Grudd et al. (2002). We have chosen to use 

this smaller set of measurement data because estimates of the pith offsets for these samples are now 

available (Kershaw 2007). 

 

The new RCS curve (based on the smaller subset of measurements) for the ring-width data without 

pith-offset values (Fig. 5.10a) is effectively identical to that used in Briffa et al. (1992). With pith-

offset values included, the RCS curve has a slightly higher juvenile growth-rate but tends to the 

same expected growth for old trees: the resulting RCS chronology (Fig. 5.11a) is not substantially 

different from that shown in Briffa et al. (1992), except that the 10-year-smoothed ring-width 

chronology is very slightly lower than that without pith estimates during the most recent 50 years. 

Figure 5.10d shows how the original linear RCS curve for the density data (dashed line) was not a 

good fit to the measured data, systematically underestimating the juvenile values and overestimating 

the measured data for tree ages between 250 and 500. This situation arose because the linear fit was 

influenced by high-density values measured in relatively old-age trees, many of which experienced 

the relative warmth of the twentieth century in parallel in their later years. In other words, the 

climate signal (as represented in the final years of the chronology) was not averaged out in the later 

(oldest) section of the RCS curve. A more appropriate, unbiased RCS curve is derived (the thick line 

of Fig. 5.10d) by using a ‘signal-free’ approach where the chronology variance (i.e., the best 

estimate of the growth-forcing signal) is iteratively removed from the measurement series so that the 

resulting age-aligned averaged measurements contain substantially little or no variance associated 

with the common forcing (see Appendix, and Melvin and Briffa 2008).  
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Figure 5.10. Using the 207 ring width series (TRW) with pith-offset estimates (Kershaw 2007) from 

the AD portion of the Torneträsk chronology (Grudd 2002) and 65 maximum latewood density 

series (MXD) from Torneträsk (Briffa et al. 1992b): (a) curves of 5-year means of average TRW by 

ring age created without using pith-offset estimates (thin line) and using pith-offset estimates (thick 

line); (b) as (a) but using MXD; (c) 5-year means of TRW by ring age created by using pith-offset 

estimates (thin line), modified negative exponential curve fitted to the ring width means created 

without using pith-offset estimates (dashed line) and age-related spline (thick line), fitted to the first 

500 years of ring width means and then linearly extended, created by using pith-offset estimates; (d) 

as (c) but using MXD. Gray shading shows ring counts by age without pith-offset estimates (a and b) 

and with pith-offset estimates (c and d). 

 

The density chronology produced by using the new ‘unbiased’ RCS curve displays potentially higher 

values after about 1800, and much of the comparative recent decline in the density compared to ring 

width chronology is removed (Fig. 5.11d). The same correction could have been achieved in this 

case by excluding the longest-lived tree density samples or by fitting the RCS curve only on the data 

extracted from tree rings up to 500 years old and extrapolating the RCS curve to give RCS values for 

older trees. The relevant conclusion, however, is that it is important to use a nonbiased 

representation of the RCS curve. Where replication is low or when there are few samples 

representing the expected RCS values for old trees, and especially when the oldest rings are all from 

trees sampled in the same period (e.g., three of the four oldest trees in the Torneträsk MXD 

chronology were sampled in 1982), it is particularly necessary to guard against signal bias 

influencing the overall shape of the RCS curve. 
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Figure 5.11. Chronologies generated by using the measurement data and regional curve 

standardization (RCS) curves shown in Figure 5.10: (a) ring width series (TRW) chronologies 

created without using pith-offset estimates and a negative-exponential RCS curve (thin linek), and 

with pith-offset estimates and using age-related spline smoothed RCS curve (thick line); (b) 

maximum latewood density series (MXD) chronologies created without using pith-offset estimates 

and a linear RCS curve (thin line) and with pith-offset estimates and an age-related spline smoothed 

RCS curve (thick line); (c) chronologies created without using pith-offset estimates, and using a 

negative-exponential RCS curve for TRW (thick line) and a linear RCS curve applied to MXD (thin 

line); (d) chronologies created by using age-related spline smoothed RCS curves and pith-offset 

estimates for TRW (thick line) and MXD (thin line). 

 

5.6.2 Application of RCS across wide species and climate ranges 

In their study of ring-width changes viewed over a large area of the Northern Hemisphere, Esper et 

al. (2002) (see also Cook et al. 2004; Frank et al. 2007) took data from 14 different locations, from 

various tree species, and standardized them using one of two RCS curves constructed from a 

subdivision of all of the measurement series. One group of measurement data displayed the familiar 

negative exponential pattern of declining ring width with increasing age, while the other showed a 

‘weakly linear’ declining trend. Two RCS curves were used because it was clear that linearly 

declining ring growth was not well suited to scaling by the curvilinear function and vice versa. 

However, by incorporating data from very different species and locations in each of the linear and 

nonlinear RCS curves, each is unavoidably associated with wide confidence intervals. The 

measurements for trees at a particular site location may be systematically over- or underestimated by 

the use of a multisite RCS curve.  
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This is an extreme case of the differing-contemporaneous-growth-rate bias discussed in Section 

5.4.2. The expression of this bias in the Esper et al. (2002) context is illustrated in Figure 5.12. This 

figure shows the local site chronologies for 5 of the 14 sites used by Esper et al.(2002), selected here 

to show how the use of multi-site RCS curves, whether linear or nonlinear in shape, can bias the 

mean of the local indices with respect to the mean indices that would have been produced by using 

an RCS curve derived from, and applied to, the measurement data only for the particular site. At 

some sites (e.g., Upperwright and Torneträsk), the bias is generally positive, while at others (e.g., 

Camphill) it is negative. At some sites, the mean bias is large compared to the temporal variance of 

the chronology (e.g., Tirol). If the regional chronologies, based on multisite-mean RCS, are simply 

averaged (as is implied in Esper et al. 2002), medium-frequency biases could arise in the final 

chronology as specific site data contained within it vary through time. In fact (though it is not 

apparent in Esper et al. 2002), the individual site chronologies were actually normalized prior to 

averaging (Ed Cook, personal communication) so that their overall means are set to a value of 1.0. 

This operation will mitigate much of the potential bias and effectively produce site chronologies 

similar to those that would be produced by using RCS applied at the site level, though medium-

frequency bias will still arise where the slope of the local and multisite RCS curves differ (e.g., for 

Upperwright , Camphill, and Gotland; shown in Fig. 5.12).  

 

 
 

Figure 5.12.  A comparison of regional curve standardized (RCS) chronologies at various sites from 

among those used in Esper et al. (2002). The alternative chronologies shown for each of the selected 

sites illustrated here were produced using different RCS curves: either that used by Esper et al. based 

on multi-site data (linear model for Upperwright (upper line) and Camphill (lower line) or non-linear 

model for Tornetrask (upper line), Tirol (upper line) and Gotland (upper line)) or a single RCS curve 

(thick line) based only on the data available for that site. The difference between the two curves at 
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each site represents a potential local bias when all chronologies are averaged to form a single 

‘Northern Hemisphere’ series. In Esper et al. (2002) this bias was largely mitigated because each site 

chronology was normalized prior to averaging. For clarity all chronologies are shown as 20-year 

smoothed series. Sample counts are shown by gray shading. 

 

Figure 5.13 indicates the changing effective net bias that would be associated with the application of 

either the mean linear form or curvilinear RCS curves to the site measurement data had the data not 

been normalized prior to averaging. These biases are simply the sum over all sites of the mean 

differences between a chronology produced by using one of the multisite RCS curves and a 

chronology produced by using an RCS curve applied only at a site level. (With the exception of the 

Mongolia data which were not available for analysis). Normalization of the individual site series 

largely removes this potential bias, leaving only the time-dependent changes in average site-latitude 

weighting applied by Esper et al. (2002) according to the site locations (presumably following the 

weighting normally applied in regional averaging of gridded temperature records to take account of 

the change of area of grid boxes with latitude when the grid is defined according to fixed latitude and 

longitude spacings).  

 

 
 

Figure 5.13. A simplified illustration of the time dependence of separate potential biases in the grand 

average of all local regional curve standardized (RCS) chronologies produced in Esper et al. (2002). 

The dotted line represents the sum, across all sites (except Mongolia, see text) of the local difference 

in the means of alternative chronologies, produced either with a hemispheric-data-based RCS or a 

local-data-based RCS curve. The mean of all individual site chronology weightings, according to site 

latitude (see Esper et al. 2002), is shown as a dashed line. The product of these two potential biases 

is shown in black. Site counts over time are shown by grey shading. 

 

5.6.3 Adaption of RCS to account for non-climate bias 

In their study of northern Finnish tree growth and climate variability during more than 7,000 years, 

Helama et al. (2005a,b) propose a modification of simple RCS, to take account of the changing 

density of forest cover, and hence competitional interactions among trees that they presume are 

sufficiently strong to alter the shape of the appropriate RCS curve through time. The progress of ring 

width decay for open-grown and close-packed trees will result in differences in the shape of RCS 

curves and could lead to bias in RCS chronologies, but can be evaluated only over a common 

‘climate’ period, and it is inappropriate to disregard the background changes in the underlying 

climate forcing of tree growth. They first construct the basis for a conventional single RCS curve by 

averaging all age-aligned measurement data. To this series they fit a negative exponential with an 

added constant term (following Fritts et al. 1969) of the form 

  y = a * e 
–bx

 + c      (1)  
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where the constant (a) defines the expected magnitude of the juvenile growth phase of ring growth 

(referred to by Helama et al. 2005a,b as the ‘juvenile growth maximum’); the constant (c) defines an 

assumed constant growth rate of old-age trees; and constant (b) describes the rate of diminution of 

ring width with age (referred to by Helama et al. 2005a,b as the ‘growth trend concavity’). 

 

In what they term ‘environmental curve standardization (ECS), Helama et al. (2005b) do not apply 

this single fitted function (Eq. 1) to all of their measurement data. Instead, they perform time-

dependent standardization by generating a series of RCS curves, each based on data from a 750-year 

time slice, overlapping each of its neighbors by 250 years. Each RCS curve is applied only to the 

data from the central 250 years of its corresponding time window. In this way, each 250-year non-

overlapping period of the chronology is based on standardization with a different RCS curve. 

However, within each 250-year standardization application, only the RCS concavity (parameter b) is 

varied; the (a) and (c) parameters are maintained at the values calculated for the single, original 

overall period RCS curve. 

 

They find a relationship between the number of tree samples (interpreted as spatial tree density) and 

the concavity (b) parameter (reported as 0.683, Helama et al. 2005b, Fig. 2d, and 0.73, Helama et al. 

2005a, Fig. 5). The lack of any significant association between tree density and juvenile growth 

maximum (a) in these data (Helama et al. 2005b, Fig. 2c) presumably led them to conclude that 

concavity was independent of average tree growth rate. 

 

In Table 5.1, we demonstrate that this conclusion is erroneous by using a subset of Finnish Lapland 

tree-ring measurements (Eronen et al. 2002; Helama et al. 2002) that form a major part (1,087 trees) 

of the Helama et al. (2005b) dataset (1,205 trees). Figure 5.14 shows these measurement data sorted, 

by relative growth rate, into six separate classes, each containing 180 or 181 trees. Growth rate was 

assessed according to the ratio of the radius of each tree divided by the radius of the single, overall-

sample RCS curve at the point corresponding to the final age of that tree. In this way, the 

measurement series for all trees were divided into six groups ranging from fastest to slowest growth. 

For each group, a curve of mean ring width by age was produced and a modified negative 

exponential curve (Eq. 1) was fitted to each (Fig. 5.14b). The coefficients are shown in Table 5.1 

(the (a), (b), and (c) columns).  

 

The low numbers of older samples generally produce large inter-tree variance in these curves. With 

few trees (i.e., for tree ages above about 250 years) the measurement averages are erratic, so we have 

also calculated the curve fits only for sections of data representing the average of at least four trees. 

These alternative (truncated data) curve fits and their associated coefficients are also shown in 

Figure 5.14b and Table 5.1 (the [at], [bt], and [ct] columns). These results show that there is 

potentially large uncertainty in estimating the (b) coefficient where the RCS curve is fitted over 

sections of poorly replicated data. In our truncated group fits, removal of only 0.5% of the ring 

measurements on average alters the (b) parameter fits by up to 20% over the six groups. Helama et 

al. (2005b) calculated estimates of concavity for 28 time periods, but based on fewer trees than in 

this sample, and there is likely to be considerable uncertainty associated with them. 

 

Table 5.1 also shows that there is a relationship between the juvenile growth maximum (a) and 

concavity (b) (r = –0.66, n = 6). This relationship is very clear in the truncated group data fits 

between (at) and (bt) (r = -0.96, n = 6). Similarly, the diminution in ring width over the first 50 years 

(Table 5.1, column [rwr]) is strongly correlated with both (a) and (b). Hence, regardless of the 

reason, fast-growing trees will display greater reduction of ring width. Helama et al. (2005b), by 
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varying (b) through time (where [a] and [c] are fixed) are standardizing the slower-growing trees 

with the ‘higher growth rate’ RCS curves and the faster-growing trees with ‘lower growth rate’ RCS 

curves (the curve with [a] and [c] held constant will have a higher rate of radial increase if [b] is 

small rather than large). The resulting mean values of the indices will be correspondingly greater for 

fast-growing trees and lower for slow-growing trees, in comparison to the means of indices 

generated by using a single fixed parameter RCS curve. The low-frequency variance in chronologies 

is imparted by changes in the means of index series. 

 

Table 5.1. Parameters from modified negative exponential curves fitted to RCS curves.
a
 

 

 a b c at bt ct rwr 

Slowest 0.48 0.020 0.26 0.48 0.022 0.24 0.40 

2
nd

 0.68 0.015 0.23 0.69 0.022 0.30 0.54 

3
rd

 0.83 0.024 0.37 0.84 0.021 0.34 0.63 

4
th

 0.95 0.014 0.29 0.95 0.019 0.37 0.75 

5
th

 1.14 0.011 0.34 1.13 0.016 0.39 0.90 

Fastest 1.41 0.011 0.36 1.36 0.013 0.47 1.18 

        

Mean 0.92 0.016 0.31 0.91 0.019 0.35  

Mean difference 0.01 0.004 0.06  

 
a 
First a, b, and c are fitted to the full period of the regional curve standardization (RCS) curves, and 

second, at, bt, and ct are fitted to the truncated period of the RCS curves; i.e., the period with four or 

more series. ‘rwr’ is ring width reduction in the first 50 years of the truncated RCS curves. Values 

are shown for six growth rate classes, slowest to fastest. The means are shown and for the columns 

and also the mean differences between the full and truncated RCS curve parameters are shown. 

Growth rate is assessed as the ratio of the diameter growth of each tree to the diameter growth of the 

single RCS curve over the life of that tree.  

 

Leaving aside the issue of whether a count of a relatively small number of tree samples through time 

is likely to be a realistic representation of between-tree competition when the sample area is very 

large and varies in its northern boundary by up to 80 km over past millennia, Helama et al. (2005b) 

are, in effect, amplifying the medium- to low-frequency variance in their ECS chronology by an 

amount that is directly proportional to the relative growth rate of the trees, regardless of whether 

there is any change in their direct competition status. This can be seen in the inverse pattern of 

variability through time of their concavity values, on the one hand, and in the difference in the ECS 

and RCS chronologies on the other (compare Figs. 4a and 4b in Helama et al. 2005b). 

 

A positive association between changing concavity and tree-sample number during the last 7,000 

years (see Fig. 4 in Helama et al. 2005a) may reflect a common response in both variables to 

changing temperature forcing; i.e., warmer periods resulting in faster tree growth (and greater decay 

rate of ring width) and increased germination and survival of pine trees. Were this to be true, even to 

some extent, the deliberate biasing of the RCS curve implicit in the ECS approach could be 

questionable. However, even in subfossil chronologies a period with poor overlap between two 

groups of contemporaneous trees can result in a period affected by this ‘modern’ sample bias. The 

most recent section of a long subfossil chronology is invariably made up of a ‘modern sample’ from 
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living trees, and the recent end of almost all such chronologies will suffer from modern-sample bias 

to some extent. 

 
 

Figure 5.14: The 1,087 ring width measurement series of the Finnish Lapland chronology (Eronen 

2002), without pith-offset estimates, sorted into six growth rate classes (≈180 trees in each) on the 

basis of the ratio of final tree radius to the radius of the single regional curve standardization (RCS) 

curve (at that age) created from all trees Smoothing was achieved by fitting a modified negative 

exponential curve to the mean series. (a) The mean ring width by age for the six growth rate classes, 

slowest to fastest (shaded). (b) Smoothed RCS curves for each of the six growth rate classes when 

fitted first to the full mean ring width by age series (continuous lines) and second when fitted to the 

portion of these series with sample counts of four or more trees (dotted lines). 

 

5.7 Discussion and suggested directions for RCS development 
It is the unavoidable loss of medium- and low-frequency variance, implicit in curve-fitting methods, 

which leads to the necessity of using RCS and the consequent requirement to recognize and 

overcome a number of problems associated with its specific implementation. Had the five sample 

series in Figure 5.2b been standardized by using curve-fitting methods, the means of each series 

would each be set to 1.0 and the slopes of each series would be virtually zero. All low-frequency 

variance would have been removed from the resulting chronology (see also Fig. 1, Briffa et al. 1996; 

Fig. 3, D’Arrigo et al. 2005). With curve-fitting standardization, our ability to compare the 

magnitude of tree growth in one decade with that in another, when they are separated by more than 

half the length of the constituent sample series, is potentially compromised. Hence, curve-fitting 

methods of tree-ring standardization are not well suited for exploring the long-term context of recent 

tree growth changes in response to factors such as recent temperature rises, increasing atmospheric 

CO2, or other hypothesized anthropogenic influences on terrestrial ecosystems. This is the 

fundamental rationale for further exploring the potential, limitations, and possible improvements of 

RCS. A number of problems have been raised in this review, and in this final discussion we 

summarize several of them and point in the direction of possible solutions. 



Dendroclimatology 

  24 of 30 

Establishing the form of the RCS curve and applying it to produce a chronology are both subject to 

potential biases. Bias in the form of the RCS curve arises when it erroneously tracks medium-

frequency variance representing common climate signal; where the fit of expected RCS curve to the 

underlying age-aligned data is poor; and possibly when no allowance is made for pith offsets when 

aligning the underlying measurements (e.g., see Fig. 5.10d). The use of ‘signal-free’ methods of 

standardization addresses the first of these potential problems and can improve the accuracy of the 

RCS curve and reduce chronology error levels. These errors are generally small for long 

(multimillennial) chronologies but can be large for shorter chronologies. Routine implementation of 

signal-free methods, therefore, forms a useful extension to RCS, particularly with regard to its 

application in processing ‘modern’ chronologies. To address the second problem and to prevent loss 

of medium-frequency climate variance, smoothing of the RCS curve must not be too flexible, 

especially where sample counts are low. However, the RCS curve must be sufficiently flexible to 

follow the pattern of expected growth plotted against tree age accurately (Melvin et al. 2007).  

 

The use of pith-offset estimates in generating and applying RCS curves will produce more accurate 

RCS curves. This increased accuracy arises because a lack of pith offsets introduces systematic bias 

in RCS curves, reducing the expected ring width maximum in early years of tree growth and 

consequently lowering the expected trend of declining growth with increasing age. Though RCS 

chronologies produced with and without pith offsets may be highly correlated (Esper et al. 2003; 

Luckman and Wilson 2005), using pith offsets may still occasionally produce more accurate 

chronologies (Naurzbaev et al. 2002; Melvin 2004; Büntgen et al. 2005; Esper et al. 2007), as is 

shown by lower chronology standard errors and a reduced frequency of local chronology bias 

associated with temporal concentrations of young (or old) tree samples in a chronology. The routine 

estimation and use of pith-offset information is, therefore, recommended. 

 

However, other potential bias problems remain in RCS application. Any climate signal that affects 

the average of age-aligned sample series, e.g., the climate trend over the length of the chronology, is 

unavoidably removed from each series within the chronology. This trend-in-signal bias is minor for 

a long chronology and is manifest only at the ends, but it can be a substantial bias affecting the 

whole length of a short, modern chronology. Differences in the growth rates of contemporaneously 

growing trees, and the inadvertent acquisition of data from younger trees that are more vigorous 

rather than slower-growing trees in recent times, both lead to the possibility of chronologies in which 

more recent chronology trends may not accurately represent the influence of climate variability. This 

contemporaneous-growth-rate bias will cancel in all but the ends of long chronologies, but may be a 

serious end-effect problem manifest equally in long subfossil and modern chronologies. 

Having discussed the various sources of potential bias, we now turn to the question as to relative 

magnitudes. No generalizations can be made, because the specific characteristics of sample data and 

underlying climate signal will vary in different situations. However, in an attempt to provide some 

illustrative indication, we offer Table 5.2. This table lists the sources and possible relative 

magnitudes of different biases, and makes a guess at the overall bias for a hypothetical, but not 

untypical, example chronology (the detailed makeup of which is described in the caption to Table 

5.2) that was assumed to have been subject to a notable increase in tree growth forcing about 50–60 

years ago. All the biases are manifest at the recent end and tend to reduce the expression of the 

expected recent growth increase over the last century of the chronology. The net biases act to 

produce a spurious positive trend 400 to 200 years from the end of the chronology, but the relatively 

large negative bias, mostly associated with non-random sampling practices, is likely to dominate in 

the most recent centuries. 
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Table 5.2. Relative sizes of individual and net bias effects.
a
 

 

Type of RCS Bias Effective  

Duration (years) 

General 

Slope of Bias 

Approximate 

Magnitude 

Absence of pith-offset estimates 200 Negative 0.1 

Trend-in-signal bias 

   Solely modern chronology 200 Negative 0.1 

   Longer subfossil chronology 200 Negative Negligible 

Contemporaneous-growth-rate bias 

   Modern sample bias 400 Positive 0.2 

   Dominancy of fast-growth indices 100 Negative 0.2 

 

Net effect 400–200 Positive 0.1 

 100–0 Negative 0.2 

 
a
 These effects are implicit in the application of simple regional curve standardization (RCS) for a 

hypothetical chronology. These figures are ‘guesstimates’ of the magnitude and effective duration of 

RCS biases discussed in this review. These figures are expressed for a hypothetical set of data from 

trees with the following characteristics: the longest trees are about 400 years old; the shortest trees 

are around 100 years old; the chronology indices have a range from 0.5 to 1.5; and the trees 

experienced a 40% growth increase, which occurred around the middle of the twentieth century. 

These biases are manifest as ‘end effects’ (i.e., all terminating at the end of the chronology). All 

biases, with the exception of trend-in-signal bias, will apply equally to modern and sub-fossil 

chronologies. 

  

The technique of aligning and averaging tree index series by ring age allows the investigation of 

bias. Comparison of tree indices sorted according to different criteria (e.g., by contemporaneous 

growth rate (Fig. 5.4b), tree age, tree diameter, latitude, altitude, aspect, or packing density) will 

allow the identification of potential systematic biases in RCS chronologies. The technique of ‘end-

aligning’ (Fig. 5.7), in which both the age-related trend and the climate signal are removed, is an 

additional method of identifying potential bias (Section 5.4.3.2). The signal-free method is also a 

tool that can be used to test for residual bias in chronologies; measurement series are divided by the 

final chronology and the residual signal will represent bias, or the limits of the standardization 

method (Melvin and Briffa 2008). 

 

The count of trees needed to produce a ‘robust’ chronology is often gauged by using the mean 

interseries correlation to calculate the expressed population signal (EPS; Wigley et al. 1984; Briffa 

and Jones 1990). However, estimates of EPS are strongly influenced by (biased towards) the 

correspondence between index series on short (primarily interannual) timescales. Experiments using 

ring width data from Torneträsk (Grudd et al. 2002) and Finnish Lapland (Eronen et al. 2002) have 

evaluated the robustness of chronology confidence in RCS. This work (Melvin 2004, Section 6.3.3) 

explored the influence on the standard deviations of chronologies (the average standard deviation of 

all yearly values) produced by varying sample counts in differently filtered tree index series. The 

results suggest that if a replication of 10 trees is required for a 30-year high-pass-filtered chronology 

to exhibit a specific mean standard deviation, a 100-year high-pass-filtered chronology would 

require a replication of 18 samples, while an RCS chronology would need 62 constituent samples to 

achieve the same standard deviation. Increasing tree counts can improve chronology confidence, but 
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will not remove systematic bias. Mitigating bias in RCS may improve confidence but will not 

remove the requirement for large sample replication. 

 

The age band decomposition (ABD) method (Briffa et al. 2001) amounts to an alternative method of 

applying the RCS technique. If the mean value of each ‘age band’ is aligned by ring age, it will form 

a stepped version of the RCS curve. The ABD method therefore suffers from many of the problems 

of RCS, especially ‘modern-sample bias,’ and equal care must be taken in the use of this method and 

in the interpretation of the results. 

 

Subfossil chronologies, like modern chronologies, are still susceptible to the contemporaneous-

growth-rate bias. One possibility of mitigating this bias is to identify and remove the influence of 

fast- versus slow-grown trees, but only when they are identified in samples growing under the same 

climate conditions. 

 

Some modifications of the application of RCS go some way towards obtaining these objectives, 

ranging from the alternative use of two sub-RCS curves (Esper et al. 2002) to the use of multiple 

RCS curves (Melvin 2004, Section 5.7). In the former, two different classes of RCS curve shape are 

identified from among those in the full dataset, and each is applied separately to the relevant group 

of sample series. This process removes substantial potential bias that would result from detrending 

series that exhibit linearly decreasing ring widths with age with an expectation of exponential decay 

and vice versa. However, this is an extreme example of the use of RCS, because the original sample 

set comprises data from various species from widely separated locations, and even the use of sub-

RCS curves will not account for the large site-to-site differences in growth rates. Each sub-RCS 

curve will be bracketed by very wide confidence limits, leaving scope for substantial bias in the 

production of chronologies. Melvin (2004, Section 5.7) advocates the use of multiple RCS, in effect 

dividing the data on the basis of relative growth rate into a number of RCS curves, each of which is 

then applied to its corresponding group of measurement series to produce (where the data are 

continuous) multiple parallel sub-RCS chronologies. If these chronologies are then averaged 

together, contemporaneous-growth-rate bias will be reduced. However, this process will also remove 

the potential to preserve some long-timescale variance that is contained in the relative differences of 

the sub-RCS chronology means. There is a particular requirement for a practical way to distinguish 

genuine long-timescale climate signals from spurious trends that may arise in RCS, solely as a result 

of non-climate-related differences in the growth rates of sample trees. 

 

Basal area increment (BAI) is a more direct measure of wood production (especially in mature trees 

after height increase has reduced) and BAIs are used widely in forestry. A number of researchers 

have used BAI chronologies as an alternative to ring widths, some employing the RCS method (e.g., 

Hornbeck et al. 1988; Becker 1989; Briffa 1990; Biondi et al. 1994; Rathgeber et al. 1999b). The use 

of BAI will likely reduce some of the problems of RCS, such as the tendency for negatively sloping 

indices from relatively faster-grown trees in the recent ends of chronologies and positively sloping 

indices from slower-growing trees, but BAI data still suffer from differing-contemporaneous-

growth-rate bias and modern-sample-bias. The use of signal-free methods and the diagnostic value in 

examining sub-RCS curves and chronologies are equally applicable to chronologies of BAI data and, 

of course, to other tree-growth parameters. 
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5.8 Conclusions 
The conceptual and practical examples of the implementation of RCS presented here are intended to 

demonstrate how problematic the application of a simple concept can be in practice. The recognition 

of the presence of bias within a chronology and the routine exploration of the magnitudes of 

different biases in RCS can only provide a better foundation for quantifying and expressing RCS 

chronology uncertainty. 

 

The net effect of potential biases in the application of the RCS method will vary according to the 

specific makeup of the samples in a chronology. Much of the potential bias may average out, 

especially when sample replication is high, but the particular problems associated with the reliability 

of the start and end of chronologies may affect chronology calibration and hinder the study of recent 

tree-growth forcing trends. Where, by coincidence, a chronology starts around 1,000 years ago, 

similar problems may be associated with gauging the accurate level of tree growth at that time and 

perhaps, the comparative magnitude of warmth in medieval as compared to modern times.  

This is not to say that biases are manifest in all RCS chronologies produced up to this time. 

However, it is hoped that drawing specific attention to these potential problems will stimulate a more 

routine approach to investigating their likely extent. This should lead to a circumspect interpretation 

of RCS-based climate reconstruction and provide impetus for further work aimed at improving the 

RCS method. 
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Appendix: Signal-free standardization 
In this review, we make several references to the ‘signal-free’ method in tree-ring standardization 

(see Sections 5.4.1, 5.5, 5.6.1, and 5.7). A more detailed discussion of the topic (in the context of 

‘data-adaptive’ standardization involving ‘curve fitting’ to individual measured series) can be found 

in Melvin and Briffa (2008). However, for the convenience of the reader, a brief description of the 

rationale and application of the signal-free approach is provided here.  

Background and rationale 

The signal-free concept stems from the observation that individual tree-ring measurement series 

represent a mixture of potential growth influences, among which are included first, that of climate 

variability through time and second, that of changing allocation processes and tree geometry that 

both affect the size of annual stem increments. Standardization has always aimed to remove or 

reduce the allocation bias; e.g., the signal of reducing ring width with age, so that the remaining 

variability in ring width indices over time provides a clearer representation of the influence of 

climate variability. Developing standardization curves from measurement series that contain the 

climate signal, where the standardization curve may track the climate signal, at least to some extent, 

will lead to the removal of some climate-related variance and so bias the resulting chronology. This 

bias is well known with respect to the removal of variance representing timescales longer than the 

typical life span of the sample trees (Cook et al. 1995). However, it can also arise where a common, 

externally forced growth signal influences the more localized fit of a standardization curve, resulting 

in the partial, or even complete, loss of a relatively short-term climate signal (in the case of more 

flexible standardization curves) and the distortion of medium-term climate trends in adjacent periods 

(where less flexible, but still ‘fitted,’ standardization functions are employed). The rationale behind 

‘signal-free’ standardization is that it should be possible to produce an improved (i.e., locally 

unbiased) chronology if the individual measurement series could be detrended without allowing the 

fitting of standardization curves to be affected by the presence of climatically forced variability. One 

suggestion for achieving this condition is to remove the common variability (chronology signal) 

from all measurement series to yield less-biased detrending curves.  

Implementing signal-free standardization 

Melvin and Briffa (2008) describe one such approach, applied in the context of ‘curve-

fitting’ standardization using options offered in the ARSTAN program (Cook 1985). They 

demonstrate how a combination of the ‘segment length curse’ and localized distortion of 

standardization curves can produce a biased ring-width chronology, apparent as a failure by the 

standardized chronology to express recent climatic trends. Details of their implementation of this 

signal-free approach, in the context of curve-fitting standardization, are given in Melvin and Briffa 

(2008).  

When this approach is applied in the case of regional curve standardization (RCS), a first 

chronology is produced by division of the tree-ring measurements by the appropriate RCS curve 

values. Each original measurement value is then divided by the appropriate chronology value for that 

year to produce a first set of ‘signal-free’ measurements. The standardization is then repeated on 

these signal-free data, and a new chronology is produced from the new signal-free indices. The 

process is repeated until the point where the signal-free data make up a chronology that has virtually 

zero variance. In practice, the magnitude of residual bias (i.e., as represented by the variance of the 

signal-free chronology) after each iteration is 20% of its initial value. A zero-variance signal-free 

chronology is considered here to be one where all values are within the range 1.0 ± 0.002. This 

condition is achieved generally within four or five signal-free iterations. At this point, the final RCS 

curve is unaffected by any external growth-forcing signal and should, therefore, yield a less-biased 

chronology.  


